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Abstract.
Background: Mild cognitive impairment (MCI) is a transitional stage from normal aging to Alzheimer’s disease (AD)
dementia. It is extremely important to develop criteria that can be used to separate the MCI subjects at imminent risk of
conversion to Alzheimer-type dementia from those who would remain stable. We have developed an automatic algorithm for
computing a novel measure of hippocampal volumetric integrity (HVI) from structural MRI scans that may be useful for this
purpose.
Objective: To determine the utility of HVI in classification between stable and progressive MCI patients using the Random
Forest classification algorithm.
Methods: We used a 16-dimensional feature space including bilateral HVI obtained from baseline and one-year follow-up
structural MRI, cognitive tests, and genetic and demographic information to train a Random Forest classifier in a sample of
164 MCI subjects categorized into two groups [progressive (n = 86) or stable (n = 78)] based on future conversion (or lack
thereof) of their diagnosis to probable AD.
Results: The overall accuracy of classification was estimated to be 82.3% (86.0% sensitivity, 78.2% specificity). The accuracy
in women (89.1%) was considerably higher than that in men (78.9%). The prediction accuracy achieved in women is the
highest reported in any previous application of machine learning to AD diagnosis in MCI.
Conclusion: The method presented in this paper can be used to separate stable MCI patients from those who are at early
stages of AD dementia with high accuracy. There may be stronger indicators of imminent AD dementia in women with MCI
as compared to men.

Keywords: Alzheimer’s disease, atrophy, hippocampus, longitudinal analysis, magnetic resonance imaging, mild cognitive
impairment, prediction, Random Forest, sex
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INTRODUCTION

Alzheimer’s disease (AD) is a progressive neu-
rodegenerative disorder and the most prevalent
cause of dementia. Cognitive decline in AD starts
many years before diagnosis and accelerates with
disease progression [1]. Currently there are no
available treatments for modifying the course of the
disease, although several clinical trials are underway
[2–4]. Mild cognitive impairment (MCI) can be a
transitional stage from asymptomatic preclinical
AD to clinical dementia due to AD. Incidence
of progression to AD in individuals with MCI is
estimated to be between 10–15% per year [5].
But not all MCI subjects develop AD; some may
remain cognitively stable for many years and others
may experience improvement in cognition [6]. It is
extremely important to develop criteria that can be
used to separate the MCI subjects at imminent risk of
conversion to an AD diagnosis from those who will
remain stable so that disease modifying treatments,
when they become available, can be applied as early
as possible and also for reducing the cost of future
clinical trials by targeting individuals with MCI with
AD as the underlying cause.

In assessing the risk of conversion from MCI to
AD multiple variables and factors can be considered
including age, sex, ethnicity, family history, genetic
information, brain imaging data, cerebrospinal fluid
(CSF) biomarkers, clinical information, and cogni-
tive test scores. In addition, the progressive nature of
AD means that the rate of change of some of these
variables with time can be informative for diagno-
sis. The complex interactions between these variables
make it very difficult for humans to process this
information for prediction purposes. For this reason,
researchers have been developing advanced pattern
recognition algorithms to teach computers to pre-
dict incipient Alzheimer-type dementia in subjects
with MCI with varying degrees of success [5, 7–14].
A recent review of literature with regard to multivari-
ate analysis and machine learning in AD research is
given by Falahati et al. [15].

We have recently developed a novel measure of
hippocampal volumetric integrity (HVI) based on
structural MRI [16]. The HVI is an estimate of the
fraction of brain parenchyma in a predefined adap-
tive hippocampal region of interest (ROI). Lower
values of this normalized measure indicate higher
hippocampal atrophy. The advantages of HVI are
that it takes less than one minute to compute bilat-
erally and fully automatically, is obtained from raw

MRI volumes without requiring any preprocessing,
and does not require correction for intracranial vol-
ume. Using HVI and its rate of change with respect
to time as features in a linear support vector machine
(SVM) algorithm achieved 97% accuracy in sep-
arating healthy controls from AD patients in an
independent cohort [16]. The main objective of this
paper is to determine the efficacy of HVI as a feature
in the more clinically interesting problem of clas-
sification between MCI subjects who would remain
stable (stable MCI or sMCI) and those who would
progress to develop AD (progressive MCI or pMCI).

The rate of progression of neurodegeneration in
AD can only be measured longitudinally and may
enable more specific and sensitive characterizations
of the disease. For example, there is evidence that
the trajectory of cognitive performance may be a bet-
ter indicator of an imminent AD diagnosis than the
level of cognitive performance at a given time [17].
Despite this, the majority of previous approaches for
predicting AD in MCI have been based on static mea-
sures, for example, structural MRI at baseline only [5,
7–14]. Therefore, in this paper we use longitudinal
structural MRI and neuropsychiatric tests for sMCI
versus pMCI classification.

The Random Forest machine learning algorithm
[18] is a powerful technique that has not been as
widely applied to AD diagnosis as other algorithms
[15]. In a comparison of 10 supervised classification
algorithms based on 8 different performance mea-
sures and application to 11 binary classification prob-
lems, the Random Forest method was a close second
best performing method [19]. Recent applications of
Random Forest classification to the problem of MCI-
to-AD prediction have been promising [13, 14].

In the present study, we applied a Random
Forest classification algorithm using longitudinal
measurement of HVI, a novel index of hippocam-
pal volumetric integrity derived from structural MRI,
cognitive test scores, and demographic and genetic
information in order to predict whether or not a
patient with MCI is at imminent risk of incipient AD.
Acronyms used in this paper are defined in Table 1.

MATERIALS AND METHODS

Study subjects

Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (http://adni.loni.
usc.edu). The ADNI was launched in 2003 as a

http://adni.loni.usc.edu
http://adni.loni.usc.edu
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Table 1
Acronym definitions

Acronym Definition

@Baseline Suffix indicating a quantity measured at the
baseline visit

@Followup Suffix indicating a quantity measured at the
followup visit

�x/�t Average rate of change of quantity x with
respect to time between baseline and
followup visits (e.g., �MMSE/�t)

AD Alzheimer’s disease
ADAS-Cog Alzheimer’s Disease Assessment

Scale-cognitive subscale
ADAS11 ADAS-Cog 11-item scale
ADAS13 Modified ADAS-Cog 13-item scale
ADNI Alzheimer’s Disease Neuroimaging Initiative
APOE4 Apolipoprotein E �4 allele
CDR Clinical Dementia Rating
CDRSB Clinical Dementia Rating Sum of Boxes
CSF Cerebrospinal fluid
HVI Hippocampal volumetric integrity

LHVI: left hemisphere HVI
RHVI: right hemisphere HVI

MCI Mild cognitive impairment
pMCI: progressive MCI subjects
sMCI: stable MCI subjects

MMSE The Mini Mental State Examination score
MRI Magnetic Resonance Imaging
OOB Out-of-bag
PET Positron emission tomography

public-private partnership, led by Principal Investi-
gator Michael W. Weiner, MD. The primary goal
of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsy-
chological assessment can be combined to measure
the progression of MCI and early AD. For up-to-date
information, see http://www.adni-info.org.

The participants in this study were MCI subjects
in the “Complete year 1 visits” ADNI-1 standard-
ized dataset [20]. The subjects’ supplementary data
were accessed in October 2013. There are 311 MCI
subjects in this cohort. To be classified as MCI in
ADNI-1, subjects had Mini-Mental State Examina-
tion (MMSE) scores between 24–30 (inclusive), a
memory complaint, objective memory loss measured
by education adjusted scores on Wechsler Memory
Scale Logical Memory II, a Clinical Dementia Rat-
ing (CDR) of 0.5, absence of significant levels of
impairment in other cognitive domains, essentially
preserved activities of daily living, and an absence of
dementia.

We further classified the MCI subjects into two
groups. Those whose diagnoses were MCI at baseline
and remained so for the duration of their observation
period of at least 3 years were labeled as stable MCI
(sMCI). Those whose diagnoses were MCI at base-

line and at one-year follow-up but were subsequently
diagnosed as AD some time during their remaining
observation period were labeled as progressive MCI
(pMCI). At the time of their probable AD diagnosis,
the pMCI subjects had MMSE scores between 20–26
(inclusive), CDR of 0.5 or 1.0, and met NINCDS-
ADRDA criteria for probable AD. Based on these
definitions, our cohort was reduced to 78 sMCI (54
men and 24 women) and 86 pMCI (55 men and 31
women) subjects.

Each of the 164 subjects underwent two struc-
tural MRI scans. One scan was conducted at baseline
and a second follow-up scan at approximately one
year later. In addition, the subjects underwent two
neuropsychiatric test batteries, again one set of tests
given near the time of the baseline MRI scan and
repeated at approximately one year later near the time
of the follow-up MRI scan. More information about
the MRI scans and the neuropsychiatric test battery
is given in the following two subsections.

MRI data

We downloaded baseline and nominal one-year
follow-up 3D MRI volumes for each of the 164
subjects in our study (328 volumes in total). The
volumes were raw (as acquired) with no pre-
processing performed. The mean (±SD) baseline
to follow-up interval was 1.00 (±0.05) year. All
MRI volumes were acquired on 1.5 Tesla scan-
ners using T1-weighted magnetization prepared
rapid gradient echo pulse sequences with matrix
sizes 192×192×160–170 or 256×256×166–184, in-
plane voxel resolutions 0.94 to 1.25 mm, 1.2 mm slice
thickness, repetition times 2300–2400 ms for multi-
coil phased array head coils and 3000 ms for birdcage
or volume coils, inversion time 1000 ms, and 8° flip
angle. More details about the MRI acquisition proto-
col are given in [21].

Neuropsychiatric tests

We also downloaded results of longitudinal neu-
ropsychiatric tests. A set of tests was given near the
time of the baseline MRI scan and repeated approx-
imately one year later near the time of the follow-up
MRI scan. The test battery included the following:
(1) The MMSE [22] ranging from 0 to 30 where
score of 20 to 24 suggests mild dementia, 13 to 20
suggests moderate dementia, and less than 12 indi-
cates severe dementia; (2) The Clinical Dementia
Rating Sum of Boxes (CDRSB) [23, 24], the sum of

http://www.adni-info.org
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scores in each of six domains of functioning: memory,
orientation, judgment and problem solving, commu-
nity affairs, home and hobbies, and personal care,
where the score in each domain ranges from 0 to 3.
Thus, the CDRSB ranges from 0 (no impairment)
to 18 (severe impairment in all six domains); (3)
The 11-item Alzheimer’s Disease Assessment Scale-
cognitive subscale (ADAS-Cog) [25] which ranges
from 0 to 70 with higher scores reflecting greater cog-
nitive impairment; and (4) The modified ADAS-Cog
13-item scale [26] which adds to ADAS-Cog a num-
ber cancellation task and a delayed free recall task,
for a total of 85 points where higher scores indicate
greater impairment.

Hippocampal volumetric integrity (HVI)

Details of the algorithm for HVI computation are
given in [16]. Briefly, HVI is the fraction of the vol-
ume of a region that is expected to encompass the
hippocampus in a normal brain that is occupied by tis-
sue (rather than CSF). The fully automated, fast, reli-
able and robust process is based on 3D T1-weighted
structural MRI and involves identification of the mid-
sagittal plane [27] and the anterior and posterior
commissures [28] on the MRI scan, from which a
rigid-body transformation is performed to a standard
orientation. Once in standard space, based on a pri-
ori training, 230 landmarks in the vicinity of the
hippocampi are detected by template matching from
which two (one for each hemisphere) 12-parameter
affine transformations are computed. The composite
(rigid-body + affine) transformations are applied to
probabilistic left and right hippocampi labels deter-
mined based on manual tracings of hippocampi on
scans from 65 normal subjects. Thus, a volume is
determined (separately for each hemisphere) that is
expected to encompass the hippocampus in a nor-
mal brain. Finally, an automated histogram analysis
method using the expectation maximization (EM)
algorithm is used to determine the partial fraction of
this region that is occupied by brain tissue (rather than
CSF). The ratio is termed the HVI. The histogram
analysis method is illustrated in Fig. 1. The purpose of
the histogram analysis is to determine a CSF intensity
threshold ICSF . For this purpose, a Gaussian mixture
model with 5 terms is fitted to the histogram of the
voxel intensities in the hippocampus ROI using the
EM algorithm. In Fig. 1, the voxel intensities his-
togram is given by the jagged line where as the EM
fit is given by the smooth thicker line. The (1 − α) th

percentile value of the histogram is denoted by Iα

Fig. 1. Histogram analysis using the EM algorithm. The histogram
of the voxel intensities comprising the left hippocampus ROI in
a subject is shown (thin jagged line) along with a 5-component
Gaussian mixture model fit using the EM algorithm (thick
smooth line). Smooth fitting allows us to estimate the gray matter
peak location Igm (indicated by the “Max” line) from which
we determine the location of a CSF intensity threshold ICSF

(indicated by the “Thld” line). HVI is defined as the fraction of
the supra-threshold voxels, or equivalently, the area under the
histogram for intensities above ICSF .

(default α = 0.25). A gray matter intensity peak Igm

is found as the peak of the EM fit of the histogram in
the intensity region [cIα, Iα] (default c = 0.4); and
ICSF is defined as ICSF = Igm − γIα with default
γ = 0.2. The HVI is essentially the area under the
histogram curve for voxel intensities above ICSF .

We computed the HVI for the right and left
hippocampi on the baseline and followup MRI
scans for all 164 subjects. Software (KAIBA)
for computing the HVI is available online at
www.nitrc.org/projects/art.

Feature space for machine learning

In machine learning, observations obtained from
objects or individuals (in this application the MCI
patients) to be classified into groups are referred
to as features. For each individual, the features are
collected into a vector referred to as the feature
vector. The dimension of this vector, which we
denote by d, equals to the number of observations
collected from each subject. The d-dimensional
feature vectors can be thought of as single points in a
d-dimensional abstract space which is referred to as
the feature space. The aim of machine learning algo-
rithms is to define boundaries in the feature space,
referred to as decision boundaries, that best separate
the individuals into the defined classes (in this

www.nitrc.org/projects/art
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Table 2
Mean ± SD of the 16 features used in the Random Forest
classification separated by stable versus progressive MCI groups

Feature sMCI (n = 78) pMCI (n = 86) p-value†

1. Age (y) 74.75 ± 6.94 74.20 ± 7.29 0.515
2. Education 15.45 ± 3.18 16.41 ± 2.77 0.064
3. APOE4 (0/1/2) (47/28/3) (27/44/15) <10–3

4. Sex (M/F) (54/24) (55/31) 0.475
5. MMSE 27.76 ± 1.82 26.49 ± 1.68 <10–6

6. �MMSE/�t 0.32 ± 2.29 –0.59 ± 1.67 0.001
7. CDRSB 1.31 ± 0.72 1.93 ± 0.88 <10–5

8. �CDRSB/�t 0.27 ± 0.85 0.57 ± 0.92 0.018
9. ADAS11 9.41 ± 4.10 12.93 ± 3.88 <10–7

10. �ADAS11/�t –0.19 ± 4.16 1.30 ± 4.00 0.016
11. ADAS13 15.36 ± 5.85 20.80 ± 5.10 <10–8

12. �ADAS13/�t –0.27 ± 5.14 1.91 ± 4.74 0.002
13. LHVI 0.80 ± 0.09 0.75 ± 0.10 <10–3

14. �LHVI/�t –0.01 ± 0.02 –0.03 ± 0.02 <10–5

15. RHVI 0.79 ± 0.09 0.72 ± 0.10 <10–3

16. �RHVI/�t –0.01 ± 0.02 –0.03 ± 0.02 <10–5

†All statistical tests were performed using the Mann-Whitney U
tests and the Chi-square tests for APOE4 and Sex distributions.
SD, standard deviation; sMCI, stable mild cognitively impaired;
pMCI, progressive mild cognitively impaired; APOE4, number of
apolipoprotein E �4 alleles; MMSE, Mini-Mental State Examina-
tion; CDRSB, Clinical Dementia Rating Sum of Boxes; ADAS11,
11-item Alzheimer’s Disease Assessment Scale cognitive sub-
scale; ADAS13, 13-item Alzheimer’s Disease Assessment Scale
cognitive subscale; LHVI, Left Hippocampal Volumetric Integrity;
RHVI, Right Hippocampal Volumetric Integrity; �x/�t, Average
rate of change of quantity x during time interval �t.

application sMCI or pMCI). In this work, we use the

notation x(i) =
{

x
(i)
1 , x

(i)
2 , . . . , x

(i)
d

}
to describe the

feature vector for a given subject i. In this section we
summarize the d features that comprise our feature
vectors.

In total, for classification purposes we used d =
16 features measured from each MCI subject as
shown in Table 2. Features 1–4 (i.e., x

(i)
1 , . . . , x

(i)
4 )

were subjects’ age, years of education, number of
apolipoprotein E �4 alleles (APOE4), and sex. The
APOE4 was defined as a categorical variable with
three levels (0, 1, and 2) that indicates the number
of �4 alleles carried by the subject. Features 5 and 6
were the average MMSE [i.e., (MMSE@Baseline +
MMSE@Followup)/2] and the average rate of change
of MMSE with respect to time from baseline to fol-
lowup, denoted by �MMSE/�t and given by:

�MMSE

�t
= MMSE@Followup−MMSE@Baseline

�t
(1)

where �t is the time interval in years between the
baseline and followup measurements. Features 7 and
8 were the average CDRSB [i.e., (CDRSB@Baseline

+ CDRSB@Followup)/2] and its rate of change with
respect to time, denoted by �CDRSB/�t and com-
puted similarly to Equation (1). Features 9 and 10
were the average 11-item ADAS-Cog (denoted by
ADAS11) and its rate of change with respect to time
(�ADAS11/�t). Features 11 and 12 were the 13-
item ADAS-Cog (denoted by ADAS13) and its time
rate of change: �ADAS13/�t. Features 13 and 14
were the average left HVI (denoted by LHVI) and its
time rate of change: �LHVI/�t. Finally, features 15
and 16 were the corresponding measures for the right
hippocampus, that is: RHVI and �RHVI/�t.

To summarize, from each of the 164 MCI subjects
in the study, we obtained values for the 16 variables
described in the previous paragraph. The variables
age, years of education, APOE4 status, sex, MMSE,
CDRSB, ADAS11, and ADAS13 were downloaded
directly from ADNI. The baseline and follow-up
values of the left and right HVI were computed
by KAIBA using baseline and one-year follow-up
MRI scans downloaded from ADNI. Our aim
was to train a machine learning algorithm that
uses these 16 measures, that is, the feature vector
x(i) =

{
x

(i)
1 , x

(i)
2 , . . . , x

(i)
d

}
to predict whether an

MCI subject would remain stable or would convert
to AD. For this purpose, we used the Random Forest
algorithm described in the following section.

Random Forest algorithm

In this paper, we utilize the Random Forest algo-
rithm [18], implemented in the randomForest R pack-
age [29], as a supervised binary (sMCI versus pMCI)
classification algorithm. In this context, a datasetD ={(

x(1), y(1)
)
,
(
x(2), y(2)

)
, . . . ,

(
x(n), y(n)

)}
is given

where n is the number of subjects, y(i) ∈ {0, 1} rep-
resents the subject label (e.g., 0 for sMCI and 1
for pMCI), and x(i) are d-dimensional feature vec-
tors measured from each subject. In this study, the
dimension of the feature space d is 16. In general, the
features x

(i)
j can be numerical variables (e.g., age) or

categorical (e.g., sex or APOE4 genotype). A super-
vised classifier essentially uses the training data D to
define a function y = f (x; D) which would assign a
label y to a subject with a feature vector x for whom
the true label is unknown at the time of classification.
The decision tree approach is a classical supervised
method for defining f (x; D) (i.e., training a classifier
using D). However, a single decision tree classifier
may have a large variance, that is, a small change in
the feature vector x could change the assigned label y.
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To overcome this instability, the Random Forest algo-
rithm [18] uses the method of bootstrap aggregation
(also known as bagging) where instead of a single
decision tree, an ensemble of B trees (B = 5000
in our application) are trained, hence the term for-
est. In this method, the decision function of each
tree, denoted by yb = f (x; Db) (b = 1, 2, . . . , B), is
trained using a bootstrap sample Db from the com-
plete dataset D (i.e., Db is obtained by sampling from
D with replacement), where the size of Db is also
n. Another element of the Random Forest method is
that for training a decision tree at any given node of
the tree, that is choosing a variable x

(i)
j and a corre-

sponding threshold value to guide the decision flow at
that node, the entire feature space is not used. Rather,
a random subspace of size m < d of the feature
space is first selected by sampling without replace-
ment from {1, 2, . . . , d} and then the node variable
is selected from within this subspace for building the
decision tree at the given node. The size of the ran-
dom subspace (m) is a parameter of the algorithm
for training the Random Forest classifier, with the
default value of m = √

d. In summary, the Random
Forest method trains an ensemble of B decision trees
using bagging and random subspaces. Given a fea-
ture vector x with an unknown label, classifications
{f (x; D1) , f (x; D2) , . . . , f (x; DB)} are made by
all B trees in the forest and a final label y is estimated
by aggregating the results, usually by a majority vote.

Out-of-bag (OOB) estimation of classification
accuracy

Since in the Random Forest method, each tree is
built using a bootstrap sample Db from the complete
dataset D, on the average about 37% of the training
samples are not used in the process of building any
given tree. These are referred to as the out-of-bag
(OOB) samples and can be used to estimate the gen-
eralization error of the Random Forest. Consider a
given sample

(
x(i), y(i)

)
, bootstrap sampling causes

this to be an OOB sample in approximately 0.37B

trees. In OOB estimation of classification accuracy,
the 0.37B trees for which the sample is considered
OOB are used to classify the sample. Let us denote
the OOB estimate of the label for the sample by
ŷ(i). This is then compared with the known label of
the sample, that is, y(i). Since every sample in the
entire dataset D is OOB for a subset of trees of sim-
ilar number, the process can be repeated for all n

samples in D. Then by comparing the OOB esti-
mates

{
ŷ(1), ŷ(2), . . . , ŷ(n)

}
with the known labels

{
y(1), y(2), . . . , y(n)

}
one can obtain the OOB esti-

mate of the accuracy, which is simply the percentage
of samples for which ŷ(i) match y(i). Empirical evi-
dence [30] suggests that the OOB estimate of the true
accuracy is as accurate as using an independent test
set of size n for estimating the true accuracy. There-
fore, using the OOB estimate removes the need for a
separate test set.

Assessment of variables for classification

We used the mean reduction of Gini impurity index
as a measure of variable importance for classification
[30]. During training of a decision tree, whenever a
variable is used to split a parent node into two descen-
dent nodes, the sum of the Gini impurity indices of
the descendent nodes is smaller than the Gini impurity
index of the parent node. The greater the difference
the better the variable has performed in splitting the
cases into pure classes. The mean amount of reduc-
tion over all nodes in the forest where a given variable
is used is taken an indication of the importance of that
variable for classification.

RESULTS

Observation period

The mean ± SD of the observation period for the
sMCI group (n = 78) was 5.88 ± 2.48 years with
a minimum of 3 years starting from the time of
their baseline MRI scan. By definition, the diag-
nosis of these subjects remained MCI during this
period. We imposed the minimum 3-year observa-
tion period requirement for the sMCI group to reduce
sample noise, that is, to reduce the chance that some
of the subjects included in the sMCI are actually
progressive cases. The follow-up periods did not
significantly differ between men (5.22 ± 2.68 y) and
women (6.17 ± 2.35 y).

In the pMCI group (n = 86) the diagnosis changed
from MCI to probable AD sometime during their
observation period. In this group, the mean ± SD
time interval from their baseline MRI scan to prob-
able AD diagnosis was 2.84 ± 1.50 years with a
minimum of 1 year. The conversion times did not
significantly differ between men (2.91 ± 1.47 y) and
women (2.72 ± 1.57 y).

Feature vector variables

Table 2 shows comparisons between sMCI and
pMCI groups separately in each of the 16 variables
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comprising the feature space. Statistical compar-
isons for the categorical variables sex and APOE4
were made using the chi-square test. Significances of
group differences in the remaining 14 variables were
assessed using the Mann-Whitney U test.

The groups did not differ in age or sex distri-
bution. There was a trend toward the pMCI group
being marginally more educated (p = 0.064) than the
sMCI group. There were statistically significant mean
differences in all the remaining 13 variables. The
distribution of the APOE4 factor was significantly
different between groups (p < 10–3) indicating that
a significantly greater proportion of pMCI subjects
carried one or two copies of the apolipoprotein E �4
allele. In all cognitive measures (MMSE, CDRSB,
ADAS11, and ADAS13), the pMCI group had sig-
nificantly poorer average scores and their scores
deteriorated at significantly faster rates as compared
to the sMCI group. Also, the HVI bilaterally were sig-
nificantly lower and declined at significantly faster
rates in the pMCI group as compared to the sMCI
group.

Since we find sex differences in the accuracy of
Random Forest classification with higher accuracy in
women (see below), we further examined the 13 vari-
ables in Table 2 that were statistically significantly
different between sMCI and pMCI groups to deter-
mine the effect sizes separately for men and women.
The results are given in Table 3. We found that the
effect sizes in 11 of the 13 variables were larger in
women, which helps to better understand the higher
classification accuracy in women compared to men.

Random Forest classification

We trained a Random Forest classifier with B =
5000 trees using the default value of m = √

d = 4 for
the dimension of the random subspaces used by the
algorithm. To reiterate, the aim of the Random Forest
classifier was to classify the MCI subjects into two
groups: sMCI and pMCI, in other words, to predict
conversion, or lack thereof, from MCI to AD based
on the 16 measured/calculated quantities obtained
at baseline and one-year follow-up from each MCI
subject.

The results of OOB estimations, which is referred
to as a confusion matrix, are summarized in
Table 4. The estimated classification sensitivity
[TP/(TP+FN)] was 86.0%. The estimated clas-
sification specificity [TN/(TN+FP)] was 78.2%.
The estimated overall accuracy of the classi-
fier [(TN+TP)/(TN+FP+TP+FN)] was 82.3%. The

receiver operating characteristic (ROC) curve for the
classifier is shown in Fig. 2 (solid line). The area
under the curve (AUC) was 0.83. The performance of
the classifier was considerably better for women (sen-
sitivity: 93.6%; specificity: 83.3%; overall accuracy:
89.1%) than for men (sensitivity: 81.8%; specificity:
75.9%; overall accuracy: 78.9%). The relative impor-
tance of the 16 variables as measured by the mean
reduction in the Gini impurity index when the vari-
able is used as a decision variable at a tree node is
shown in Fig. 3. According to this criterion, ADAS13
was the most important variable for classification fol-
lowed by the rate of change with respect to time of
the right HVI.

In order to assess the contribution of longitudi-
nal measurements to classification performance, we
retrained the Random Forest classifier after exclud-
ing the six features representing the rates of change
of variables that could only be obtained longitudi-
nally (Table 2: features 6, 8, 10, 12, 14, and 16). The
performance of the classifier reduced considerably
yielding an estimated 75.6% sensitivity, 69.2% speci-
ficity, and 72.6% overall accuracy. The ROC curve
for this analysis is shown in Fig. 2 (dashed line). The
AUC reduced to 0.77.

We also retrained the classifier by using only the
four features related to the HVI (Table 2: features
13-16). In this case the overall classification accu-
racy reduced to 68.3% and the AUC of the ROC
curve reduced to 0.74 (Fig. 2, dash-dot line). On the
other hand, when we retrained the classifier by using
all the non-HVI related features (Table 2: features
1–12), we obtained an overall classification accuracy
of 71.9% and an AUC of 0.77 (Fig. 2, dotted line). In
both cases, the classification performance was con-
siderably lower than the 82.3% achieved using all
features. The ability of classification algorithms such
as the Random Forest to combine a number of weak
learners to obtain a single strong learner is known as
boosting.

DISCUSSION

Several biomarkers have shown prediction power
for the early detection of AD. Among the most
established and clinically validated ones are vari-
ous neuropsychiatric measures of cognitive function
[22–26], measures derived from structural MRI, par-
ticularly the hippocampus volume [31–33], CSF
total tau (t-tau), tau phosphorylated at threonine 181
(p-tau181) and A�1–42, positron emission tomo-
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Table 3
Differences between sMCI and pMCI groups within each sex

Men (n = 109) Women (n = 55)
Feature sMCI (54) pMCI (55) p r sMCI (24) pMCI (31) p r

APOE4 (0/1/2) (31/20/3) (18/28/9) 0.017 0.27† (16/8/0) (9/16/6) 0.002 0.42†
MMSE 27.75 ± 1.55 26.79 ± 1.65 0.002 0.29 27.79 ± 2.37 25.97 ± 1.62 0.000 0.51
�MMSE/�t 0.50 ± 1.94 –0.55 ± 1.68 0.014 0.23 –0.09 ± 2.93 –0.67 ± 1.69 0.035 0.28
CDRSB 1.33 ± 0.75 1.90 ± 0.88 0.000 0.35 1.28 ± 0.65 1.98 ± 0.88 0.003 0.40
�CDRSB/�t 0.19 ± 0.79 0.64 ± 0.87 0.002 0.30 0.47 ± 0.94 0.45 ± 1.02 0.830 0.03
ADAS11 9.41 ± 3.78 12.63 ± 3.95 0.000 0.37 9.40 ± 4.84 13.47 ± 3.76 0.000 0.50
�ADAS11/�t –0.59 ± 3.51 0.84 ± 4.24 0.073 0.17 0.71 ± 5.34 2.12 ± 3.46 0.194 0.18
ADAS13 15.66 ± 5.60 21.14 ± 4.92 0.000 0.38 14.69 ± 6.44 21.96 ± 5.30 0.000 0.56
�ADAS13/�t –0.75 ± 4.44 1.66 ± 4.94 0.005 0.27 0.80 ± 6.42 2.35 ± 4.39 0.245 0.16
LHVI 0.772 ± 0.083 0.717 ± 0.095 0.006 0.26 0.852 ± 0.077 0.797 ± 0.086 0.01 0.35
�LHVI/�t –0.013 ± 0.015 –0.027 ± 0.024 0.001 0.32 –0.015 ± 0.023 –0.027 ± 0.018 0.006 0.37
RHVI 0.765 ± 0.095 0.698 ± 0.096 0.001 0.33 0.832 ± 0.076 0.767 ± 0.098 0.009 0.35
�RHVI/�t –0.013 ± 0.015 –0.025 ± 0.022 0.005 0.27 –0.013 ± 0.014 –0.029 ± 0.020 0.000 0.53

Quantities are given as mean ± standard deviation, except for APOE4 for which the number of subjects who carry 0/1/2 copies of the
apolipoprotein E �4 allele is given. r: Effect size defined as Z/

√
n. †Cramer’s v.

Table 4
OOB estimation confusion matrix

Reference
sMCI pMCI

Prediction
sMCI TN = 61 (41 males) FN = 12 (10 males)
pMCI FP = 17 (13 males) TP = 74 (45 males)

TN, true negative; TP, true positive; FP, false positive; FN, false
negative; sMCI, stable MCI; pMCI, progressive MCI.

graphy (PET) measures of A� plaques assessed by
11C-PiB or 18F-AV-45 and measures of regional
cerebral rates of glucose metabolism derived from
18F-FDG PET [34]. Measuring CSF biomarkers
requires a spinal tap and PET imaging is more expen-
sive and not as widely available as MRI. Training
data for machine learning are also limited for CSF
biomarkers and PET measures. Therefore, for prag-
matic clinical utility, the current study was limited
to measures based on longitudinal structural MRI,
neuropsychiatric tests, APOE genotype, and sim-
ple demographic information for sMCI versus pMCI
classification. In all, a 16-dimensional feature vector
was used for classification.

We used a novel measure of HVI derived from
structural MRI as a biomarker. HVI is computed fully
automatically, fast (less than 1 minute), and reliably
without requiring any pre-processing of the structural
MRI images (e.g., distortion correction). Another
advantage is that HVI does not require correction
for intracranial volume for two main reasons. Firstly,
HVI is a normalized measure (tissue fraction of the
ROI). Therefore, if the scale of the ROI changed, the
HVI value would remain the same, that is, HVI is
scale-invariant. Secondly, before HVI computation,
we apply a local 12-parameter affine transformation

Fig. 2. Receiver operating characteristic (ROC) curves for the
cases of using all 16 features (solid line, AUC 0.83); excluding lon-
gitudinal data (dashed line, AUC 0.77); excluding features related
to HVI (dotted line, AUC 0.77); and including only HVI related
features (dash-dot line, AUC 0.74).

computed based on landmark-detection to the MRI
which to a large extent normalizes the size of the
immediate medial temporal structures surrounding
the hippocampus across individuals. Further details
of the algorithm for HVI computation are given
in [16].

The Random Forest classifier was able to predict
conversion from MCI to AD dementia with estimated
accuracy of 82.3%. Although it is difficult to precisely
compare this result with previous studies because of
the different datasets used to train and evaluate the
classification algorithms and different methods used
for estimating the prediction accuracy, a review of the
literature indicates that the typical accuracy of the cur-
rent algorithms for predicting MCI to AD conversion
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Fig. 3. Order of importance of variables for Random Forest clas-
sification as measured by the mean decrease in the Gini impurity
index when the variable is used for splitting a tree node in the
Random Forest.

is in the low 70th percentiles [5, 7–14]. Therefore,
it can be said that the overall estimated accuracy of
our Random Forest classifier is high in comparison
to previous reports.

A very interesting finding of this research is that the
accuracy of classification when broken down by sex
(Table 4) was considerably higher in women (89.1%)
than in men (78.9%). With the classification accu-
racy in women, to the best of our knowledge, being
the highest reported in any previous application of
machine learning to the current problem. A possi-
ble explanation for the greater accuracy achieved in
predicting progression from MCI to AD in women
could simply be sampling bias in the ADNI dataset,
and that this result may not be generalizable to the
MCI population. On the other hand, multiple studies
suggest that the trajectories of structural and func-
tional changes in the brain and the associated clinical
and cognitive deficits in the course of AD devel-
opment may be different between men and women.
The apolipoprotein E �4 allele, the strongest known
genetic factor for sporadic AD [35], has been shown
to confer greater risk of AD development in women
[36–39]. In cross-sectional studies, atrophy of the
medial temporal lobe structures in MCI and mild
to moderate AD has been shown to be associated
with APOE genotype with greater prominence in
women compared to men [40, 41]. Longitudinally,
sex and age interactions have also been shown in
brain atrophy rates obtained by voxelwise analyses
[42, 43]. ROI analyses also show sex differences
in atrophy rates of several brain structures includ-
ing the hippocampus and entorhinal cortex in healthy
controls, MCI, and AD subjects [16, 43]. Sex differ-

ences have also been observed in the rates of decline
of clinical and cognitive measures in MCI subjects
with faster deterioration in women [44, 45]. Taken
together, these studies suggest that the patterns of AD
predictors at baseline and their rates of change with
time are different between men and women with MCI.
Therefore, it is conceivable that there may be stronger
indicators of imminent AD dementia (or lack thereof)
in women with MCI as compared to men, and that the
results of this paper may be generalized to the MCI
population. Future replication studies using indepen-
dent datasets are necessary to determine whether the
results of this paper are simply due to a sampling
bias in ADNI or whether in fact it is possible to pre-
dict MCI to AD conversion in women with greater
accuracy than in men.

We also found that the effect size of HVI differ-
ence between sMCI and pMCI groups is larger for
the right hippocampus as compared to the left hip-
pocampus (Table 2), and that the HVI and its rate of
change on the right hippocampus are more important
variables for classification than those of left hip-
pocampus (Fig. 3). These results are consistent with
several volumetric studies that have found the right
hippocampus to be more affected than the left in AD
and MCI [46–48].

A limitation of the current approach is the require-
ment of longitudinal baseline and one-year follow-up
MRI volumes for prediction of MCI to AD con-
version. A shorter baseline to follow-up period
(e.g., 6 months) would make the current approach
a much more practical proposition for both diagno-
sis and clinical trials. But it would also likely reduce
the signal-to-noise ratio of the longitudinal variables
used for prediction. Therefore, some loss in the pre-
diction accuracy could be expected when the initial
observation period is reduced. It may be possible to
compensate for this potential reduction in accuracy
by including additional AD biomarkers as features in
the classification process. Future studies are required
to assess the performance of the Random Forest
classification algorithms trained based on shorter
observation periods with additional biomarkers.

Additional biomarkers could for example be
related to the size and shape of the corpus callo-
sum derived from structural MRI which many studies
have shown to be different between mild AD and nor-
mal subjects both in their baseline levels and rates of
change longitudinally [49–52]. Other potential struc-
tural MRI biomarkers are measures of atrophy in the
entorhinal cortex [53–55] and posterior cingulate [56,
57]. The feature space could also be augmented by
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additional clinical and cognitive measures, such as
the Functional Activities Questionnaire (FAQ) [58],
a low cost 10-item measure ranging from 0 (normal)
to 30 (maximum impairment) which has been shown
to have power in predicting a change in diagnostic
status from MCI to AD [59–61].

Features used for classification could also include
other MRI modalities such as resting-state functional
MRI [62], diffusion tensor imaging [63], and arte-
rial spin labeling [64], each of which have shown
promise in discriminating between normal aging and
AD. Thus a multimodality approach could potentially
improve performance. Our use of raw T1-weighted
imaging requires the shortest acquisition time and
least pre- and post-processing.

It should also be mentioned that the MRI volumes
used in the current paper had been acquired using
1.5 Tesla scanners. Intuitively, using higher signal-to-
noise ratio volumes that can be obtained from modern
3 Tesla MRI scanners could potentially increase the
accuracy of the prediction methods presented in this
paper. However, potential improvements need to be
demonstrated in future studies.

The mean ± SD baseline to probable AD diagno-
sis in the pMCI group was 2.84 ± 1.50 years. This
means that after the baseline and 1-year follow-
up scans are acquired, if a prediction of imminent
conversion to probable AD is made based on the tech-
niques developed in this paper, there is on average a
1.8-year window of treatment aimed at slowing or
stopping disease progression. This window of oppor-
tunity for therapeutic intervention can be extended
by six months if the length of the observation period
can be reduced from one year to six months without
sacrificing accuracy, e.g., by using 3 Tesla scanners
and including corpus callosum and other structural
MRI biomarkers.

Another limitation of this study is that even though
the accuracies achieved, particularly in women, are
among the highest reported in the literature, roughly
80% specificity/sensitively is still not high enough
to be applicable for routine clinical work. Thus, the
challenge remains to increase the accuracy in future
computer aided diagnosis methods. However, any
prediction performance above the level of chance will
reduce the cost of clinical trials of therapeutic inter-
ventions. It should also be kept in mind that sample
noise in both training and testing data (e.g., mislabel-
ing progressive cases as sMCI) will always impose a
fundamental limit in achievable accuracy.

In conclusion, we have shown in this paper that
using longitudinal HVI measures obtained from

structural MRI along with a number of common cog-
nitive tests and demographic and genetic information,
it is possible to accurately predict whether or not
an MCI subject would remain stable or progress to
develop AD type dementia. We also found that the
estimated prediction accuracy in women is consider-
ably higher than that of men. An important feature
of this work is that our approach is designed to be
clinically practical and viable. The measures used
in our prediction are widely available, non-invasive,
and measureable without much difficulty or requir-
ing substantial expertise or preprocessing of data. We
avoid preprocessing of structural MRI scans (e.g.,
distortion correction, B1 field inhomogeneity cor-
rection, etc.) on the grounds that these procedures
may not be easily available for routine clinical work.
We take advantage of the longitudinal data based on
evidence that biomarkers of AD are not just differ-
ent at baseline but their rate of change is different
between stable and progressive MCI groups. Finally,
we use the Random Forest machine learning algo-
rithm, a powerful technique that has not been as
widely applied to the current problem as other algo-
rithms. Future studies on independent datasets are
necessary to confirm our results of sex differences
in prediction accuracy. If confirmed, this finding will
have important implications in both clinical practice
and in research.
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